This paper presents an approach to extend the capabilities of smart grid laboratories through the concept of Power Hardware-in-the-Loop (PHiL) testing by re-purposing existing grid-forming converters. A simple and cost-effective power interface, paired with a remotely located Digital Real-time Simulator (DRTS), facilitates Geographically Distributed Power Hardware Loop (GD-PHiL) in a quasi-static operating regime. In this study, a DRTS simulator was interfaced via the public internet with a grid-forming ship-to-shore converter located in a smart-grid testing laboratory, approximately 40 km away from the simulator. A case study based on the IEEE 13-bus distribution network, an on-load-tap-changer (OLTC) controller and a controllable load in the laboratory demonstrated the feasibility of such a setup. A simple compensation method applicable to this multi-rate setup is proposed and evaluated. Experimental results indicate that this compensation method significantly enhances the voltage response, whereas the conservation of energy at the coupling point still poses a challenge. Findings also show that, due to inherent limitations of the converter’s Modbus interface, a separate measurement setup is preferable. This can help achieve higher measurement fidelity, while simultaneously increasing the loop rate of the PHiL setup.