Heat activates the dormant spores of certain Bacillus spp., which is reflected in the "activation shoulder" in their survival curves. At the same time, heat also inactivates the already active and just activated spores, as well as those still dormant. A stochastic model based on progressively changing probabilities of activation and inactivation can describe this phenomenon. The model is presented in a fully probabilistic discrete form for individual and small groups of spores and as a semicontinuous deterministic model for large spore populations. The same underlying algorithm applies to both isothermal and dynamic heat treatments. Its construction does not require the assumption of the activation and inactivation kinetics or knowledge of their biophysical and biochemical mechanisms. A simplified version of the semicontinuous model was used to simulate survival curves with the activation shoulder that are reminiscent of experimental curves reported in the literature. The model is not intended to replace current models to predict dynamic inactivation but only to offer a conceptual alternative to their interpretation. Nevertheless, by linking the survival curve's shape to probabilities of events at the individual spore level, the model explains, and can be used to simulate, the irregular activation and survival patterns of individual and small groups of spores, which might be involved in food poisoning and spoilage.Heat inactivation kinetics of bacterial spores is a wellresearched field. Much of the work on its relation to foods has focused on the heat-resistant spores of Clostridia, particularly those of Clostridium botulinum, which to this date serves as the reference organism in sterility calculations of low-acid foods (8, 32). The thermal resistance of Bacilli spores, although also extensively studied, has received less attention in the literature on food preservation. This is primarily because they are unlikely to germinate and produce cells that will survive and divide under the anaerobic conditions in a sterilized food container. Yet the mere possibility of viable Bacillus spores being present in processed foods has become an issue of food safety and a security concern. For this reason, there is a renewed interest in these spores' heat resistance (2,3,6,7,16,30). One of the peculiarities of certain Bacillus spores, like those of Bacillus sporothermodurans or Bacillus stearothermophilus, is that many of them can remain dormant unless activated by heat. The result is a survival curve that exhibits an "activation shoulder," as shown schematically in Fig. 1 and with published data in Fig. 2. Thus, modeling this survival pattern, where the number of spores initially grows rather than declines, must account for the heat's dual role of being a lethal agent and activator at the same time.Traditionally, the thermal inactivation of both Clostridia and Bacilli spores has been thought to follow first-order kinetics (9, 12, 31), an assumption that has been frequently challenged in recent years (18,21,33,35). The most p...