Abstract:Ground-based precipitation data are still the dominant input type for hydrological models. Spatial variability in precipitation can be represented by spatially interpolating gauge data using various techniques. In this study, the effect of daily precipitation interpolation methods on discharge simulations using the semi-distributed SWAT (Soil and Water Assessment Tool) model over a 30-year period is examined. The study was carried out in 11 meso-scale (119-3935 km 2 ) sub-catchments lying in the Sulejów reservoir catchment in central Poland. Four methods were tested: the default SWAT method (Def) based on the Nearest Neighbour technique, Thiessen Polygons (TP), Inverse Distance Weighted (IDW) and Ordinary Kriging (OK). =The evaluation of methods was performed using a semi-automated calibration program SUFI-2 (Sequential Uncertainty Fitting Procedure Version 2) with two objective functions: Nash-Sutcliffe Efficiency (NSE) and the adjusted R 2 coefficient (bR 2 ). The results show that: (1) the most complex OK method outperformed other methods in terms of NSE; and (2) OK, IDW, and TP outperformed Def in terms of bR 2 . The median difference in daily/monthly NSE between OK and Def/TP/IDW calculated across all catchments ranged between 0.05 and 0.15, while the median difference between TP/IDW/OK and Def ranged between 0.05 and 0.07. The differences between pairs of interpolation methods were, however, spatially variable and a part of this variability was attributed to catchment properties: catchments characterised by low station density and low
OPEN ACCESSWater 2015, 7 748 coefficient of variation of daily flows experienced more pronounced improvement resulting from using interpolation methods. Methods providing higher precipitation estimates often resulted in a better model performance. The implication from this study is that appropriate consideration of spatial precipitation variability (often neglected by model users) that can be achieved using relatively simple interpolation methods can significantly improve the reliability of model simulations.