This paper focuses on Deterministic and Reliability Based Design Optimization (DO and RBDO) of composite stiffened panels considering post-buckling regime and progressive failure analysis. The ultimate load that a post-buckled panel can hold is to be maximised by changing the stacking sequence of both skin and stringers composite layups. The RBDO problem looks for a design that collapses beyond the shortening of failure obtained in the DO phase with a target reliability while considering uncertainty in the elastic properties of the composite material. The RBDO algorithm proposed is decoupled and hence separates the Reliability Analysis (RA) from the deterministic optimization. The main code to drive both the DO and RBDO approaches is written in MATLAB and employs Genetic Algorithms (GA) to solve the DO loops because discrete design variables and highly nonlinear response functions are expected. The code is linked with Abaqus to perform parallel explicit nonlinear finite element analyses in order to obtain the structural responses at each generation. The RA is solved through an inverse Most Probable failure Point (MPP) search algorithm that benefits from a Poly-