Permafrost soils store ∼50% of terrestrial C, with Yedoma permafrost containing ∼25% of the total C. Permafrost is undergoing degradation due to thawing, with potentially hazardous effects on landscape stability and water resources. Complicating ongoing efforts to project the ultimate fate of deep permafrost C is the poorly constrained role of the redox environment, Fe-minerals, and its redox-active phases, which may modulate organic Cabundance, composition, and reactivity through complexation and catalytic processes. We characterized C fate, Fe fractions, and dissolved organic matter (DOM) isolates from permafrost-thaw under varying redox conditions. Under anoxic incubation conditions, 33% of the initial C was lost as gaseous species within 21 days, while under oxic conditions, 58% of C was lost. Under anoxic incubation, 42% of the total initial C was preserved in a dissolved fraction. Lignin-like compounds dominated permafrost-thaw, followed by lipid-and protein-like compounds. However, under anoxic incubation conditions, there was accumulation of lipid-like compounds and reduction in the nominal oxidation state of C over time, regardless of the compound classes. DOM dynamics may be affected by microbial activity and abiotic processes mediated by Fe-minerals related to selective DOM fractionation and/or its oxidation. Chemodiversity DOM signatures could serve as valuable proxies to track redox conditions with permafrost-thaw.