Chronic kidney disease (CKD) patients typically progress to kidney failure, but the rate of progression differs per patient or may not occur at all. Current CKD screening methods are sub-optimal at predicting progressive kidney function decline. This investigation develops a model for predicting progressive CKD based on a panel of biomarkers representing the pathophysiological processes of CKD, kidney function, and common CKD comorbidities. Two patient cohorts are utilised: The CKD Queensland Registry (n = 418), termed the Biomarker Discovery cohort; and the CKD Biobank (n = 62), termed the Predictive Model cohort. Progression status is assigned with a composite outcome of a ≥30% decline in eGFR from baseline, initiation of dialysis, or kidney transplantation. Baseline biomarker measurements are compared between progressive and non-progressive patients via logistic regression. In the Biomarker Discovery cohort, 13 biomarkers differed significantly between progressive and non-progressive patients, while 10 differed in the Predictive Model cohort. From this, a predictive model, based on a biomarker panel of serum creatinine, osteopontin, tryptase, urea, and eGFR, was calculated via linear discriminant analysis. This model has an accuracy of 84.3% when predicting future progressive CKD at baseline, greater than eGFR (66.1%), sCr (67.7%), albuminuria (53.2%), or albumin-creatinine ratio (53.2%).