2023
DOI: 10.35784/jcsi.3273
|View full text |Cite
|
Sign up to set email alerts
|

Comparison of shallow and deep learning methods of ECG signals clas-sification for arrhythmia detection

Abstract: The research aimed to compare the classification performance of arrhythmia classification from the ECG signal dataset from the Massachusetts Institute of Technology–Beth Israel Hospital (MIT-BIH) database. Shallow learning methods that were used in this study are Support Vector Machine,  Naïve Bayes, and Random Forest. 1D Convolutional Neural Network (1D CNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) were deep learning methods that were used for the study. The models were tested on a datas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 15 publications
0
0
0
Order By: Relevance