This chapter describes a part of autonomous driving of work vehicles. This type of autonomous driving consists of work sensing and mobility control. Particularly, this chapter focuses on autonomous work sensing and mobility control of a commercial electric robotic lawn mower, and proposes an AI-based approach for work vehicles such as a robotic lawn mower. These two functions, work sensing and mobililty control, have a close correlation. In terms of efficiency, the traveling speed of a lawn mower, for example, should be reduced when the workload is high, and vice versa. At the same time, it is important to conserve the battery that is used for both work execution and mobility. Based on these requirements, this chapter is focused on developing an estimation system for estimating lawn grass lengths or ground conditions in a robotic lawn mower. To this end, two AI algorithms, namely, random forest (RF) and shallow neural network (SNN), are developed and evaluated on observation data obtained by a fusion of ten types of sensor data. The RF algorithm evaluated on data from the fusion of sensors achieved 92.3% correct estimation ratio in several experiments on real-world lawn grass areas, while the SNN achieved 95.0%. Furthermore, the accuracy of the SNN is 94.0% in experiments where sensor data are continuously obtained while the robotic lawn mower is operating. Presently, the proposed estimation system is being developed by integrating two motor control systems into a robotic lawn mower, one for lawn grass cutting and the other for the robot’s mobility.