Purpose. To assess the liquefaction of Kirkukβs industrial region following a series of earthquakes that struck the city during the previous five years based on the current earthquake activity in the region. Methodology. Initially, substantial relationships for shear wave velocity in different types of soil were collected and studied, where the majority of these correlations necessitated the use of standard penetration tests in the field. Indeed, two boreholes were drilled up to a maximum depth of 10 m, and the numbers of blows for conventional penetration tests were measured at various depths in each borehole. The stated shear wave velocity values from the literature, as well as the maximum and lowest shear wave velocity constraints, were employed in a simple technique to estimate the cyclic shear stress induced by earthquake loading. Findings. Based on laboratory and field data, the safety factor against earthquake-induced liquefaction can be determined. When the worst-case scenario was examined using the suggested values of shear wave velocity, the factor of safety against earthquake was reduced by 94β―% as the depth increased from 3.5 to 9 m. Originality. No previous study has tried to quantify the liquefaction impact of industrial zone of Kirkuk city as such an important rich-oil area was influenced by series of earthquakes occurrence. More importantly, for the first time field soil samples from on-site boreholes in Kirkuk city have been collected and used for liquefaction assessment since such real field data can be utilized properly in liquefaction evaluation process in the absence of any comparable quantification for the investigated area. Practical value. Precious liquefaction analysis should be performed prior to any proposed project construction in the light of increased earthquake activity in the industrial zone in Kirkuk city (Iraq).