In order to ensure sufficient recovery of the human body and brain, healthy sleep is indispensable. For this purpose, appropriate therapy should be initiated at an early stage in the case of sleep disorders. For some sleep disorders (e.g., insomnia), a sleep diary is essential for diagnosis and therapy monitoring. However, subjective measurement with a sleep diary has several disadvantages, requiring regular action from the user and leading to decreased comfort and potential data loss. To automate sleep monitoring and increase user comfort, one could consider replacing a sleep diary with an automatic measurement, such as a smartwatch, which would not disturb sleep. To obtain accurate results on the evaluation of the possibility of such a replacement, a field study was conducted with a total of 166 overnight recordings, followed by an analysis of the results. In this evaluation, objective sleep measurement with a Samsung Galaxy Watch 4 was compared to a subjective approach with a sleep diary, which is a standard method in sleep medicine. The focus was on comparing four relevant sleep characteristics: falling asleep time, waking up time, total sleep time (TST), and sleep efficiency (SE). After evaluating the results, it was concluded that a smartwatch could replace subjective measurement to determine falling asleep and waking up time, considering some level of inaccuracy. In the case of SE, substitution was also proved to be possible. However, some individual recordings showed a higher discrepancy in results between the two approaches. For its part, the evaluation of the TST measurement currently does not allow us to recommend substituting the measurement method for this sleep parameter. The appropriateness of replacing sleep diary measurement with a smartwatch depends on the acceptable levels of discrepancy. We propose four levels of similarity of results, defining ranges of absolute differences between objective and subjective measurements. By considering the values in the provided table and knowing the required accuracy, it is possible to determine the suitability of substitution in each individual case. The introduction of a “similarity level” parameter increases the adaptability and reusability of study findings in individual practical cases.