The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was expanded by including a newly developed coolant loop solution method aimed at reducing the simulation effort for complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by MAHLE Inc. and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2°C and 43°C. The largest root mean square difference between data and simulation results for pressure, temperature, energy and mass flow rate was less than 7%.
A/C -air conditioning
CFL -combined fluid loop
EV -Electric vehicle
NREL -National Renewable Energy Laboratory
RMS -root mean square
WEG -water-ethylene glycolThe Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE's peer review process under the supervision of the session organizer. The process requires a minimum of three (3) reviews by industry experts.All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.