Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Human amniotic membrane (hAM), the innermost placental layer, has unique properties that allow for a multitude of clinical applications. It is a common misconception that birth-derived tissue products, such as dual-layered dehydrated amnion–amnion graft (dHAAM), are similar regardless of the manufacturing steps. A commercial dHAAM product, Axolotl Biologix DualGraft™, was assessed for biological and mechanical characteristics. Testing of dHAAM included antimicrobial, cellular biocompatibility, proteomics analysis, suture strength, and tensile, shear, and compressive modulus testing. Results demonstrated that the membrane can be a scaffold for fibroblast growth (cellular biocompatibility), containing an average total of 7678 unique proteins, 82,296 peptides, and 96,808 peptide ion variants that may be antimicrobial. Suture strength results showed an average pull force of 0.2 N per dHAAM sample (equating to a pull strength of 8.5 MPa). Tensile modulus data revealed variation, with wet samples showing 5× lower stiffness than dry samples. The compressive modulus and shear modulus displayed differences between donors (lots). This study emphasizes the need for standardized processing protocols to ensure consistency across dHAAM products and future research to explore comparative analysis with other amniotic membrane products. These findings provide baseline data supporting the potential of amniotic membranes in clinical applications.
Human amniotic membrane (hAM), the innermost placental layer, has unique properties that allow for a multitude of clinical applications. It is a common misconception that birth-derived tissue products, such as dual-layered dehydrated amnion–amnion graft (dHAAM), are similar regardless of the manufacturing steps. A commercial dHAAM product, Axolotl Biologix DualGraft™, was assessed for biological and mechanical characteristics. Testing of dHAAM included antimicrobial, cellular biocompatibility, proteomics analysis, suture strength, and tensile, shear, and compressive modulus testing. Results demonstrated that the membrane can be a scaffold for fibroblast growth (cellular biocompatibility), containing an average total of 7678 unique proteins, 82,296 peptides, and 96,808 peptide ion variants that may be antimicrobial. Suture strength results showed an average pull force of 0.2 N per dHAAM sample (equating to a pull strength of 8.5 MPa). Tensile modulus data revealed variation, with wet samples showing 5× lower stiffness than dry samples. The compressive modulus and shear modulus displayed differences between donors (lots). This study emphasizes the need for standardized processing protocols to ensure consistency across dHAAM products and future research to explore comparative analysis with other amniotic membrane products. These findings provide baseline data supporting the potential of amniotic membranes in clinical applications.
The human fetal membrane is a globally accepted biological biomaterial for wound and tissue repair and regeneration in numerous fields, including dermatology, ophthalmology, and more recently orthopedics, maxillofacial and oral surgery, and nerve regeneration. Both cells and matrix components of amnion and chorion are beneficial, releasing a diverse range of growth factors, cytokines, peptides, and soluble extracellular matrix components. Beside fetal membranes, numerous natural materials have also been reported to promote wound healing. The biological properties of these materials may potentiate the pro-healing action of fetal membranes. Comparison of such materials with fetal membranes has been scant, and their combined use with fetal membranes has been underexplored. This review presents an up-to-date overview of (i) clinical applications of human fetal membranes in wound healing and tissue regeneration; (ii) studies comparing human fetal membranes with natural materials for promoting wound healing; and (iii) the literature on the combined use of fetal membranes and natural pro-healing materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.