A B S T R A C T The ability of dl-propranolol to block renin secretion in response to various extrarenal stimuli, such as hemorrhage and hypoglycemia, has been interpreted to indicate the presence of an intrarenal beta receptor regulating renin release. However, two problems complicate this interpretation: (a) the stimuli have effects outside the kidney, and (b) dl-propranolol has a local anesthetic, as well as a beta adrenergic blocking, action. In the present study, the effects of a purely intrarenal stimulus, in the form of renal nerve stimulation (RNS), on renin secretion was examined. The effects of dl-propranolol (anesthetic and beta-blocking activity), l-propranolol (beta-blocking activity only), and d-propranolol (local anesthetic activity only) on the renin response to RNS were examined. In a control group of animals, two sequential RNS increased mean renin secretion from 401 to 1,255 U/min (P < 0.25) and from 220 to 2,179 U/min (P <0.01). In a second group the first RNS increased renin secretion from 201 to 1,181 U/min (P < 0.01), but after dl-propranolol was given RNS did not significantly alter renin secretion (33 to 55 U/min). In a third group the initial RNS increased renin secretion from 378 to 1,802 U/min (P < 0.025), but after l-propranolol was given RNS had no significant effect on renin secretion (84 to 51 U/min). A fourth group of dogs showed a rise in renin secretion from 205 to 880 U/min (P < 0.001) in response to the first RNS, while the second RNS, given after an infusion of d-propranolol, caused a rise in renin secretion from 80 to 482 (P < 0.005). The nature of the electrical stimulus was consistent in all groups and caused no detectable changes in renal or systemic hemodynamics or in urinary electrolyte excretion. The results, there-