The selection of appropriate sample size and point distribution on the measuring surface has been a fundamental problem in the contemporary coordinate metrology. It is usually resolved by the users depending on their instinct or prior experience. As a result, inspection results have to be compromised between accuracy and measurement time. However, to deliver quality products in minimum time, effort, and cost, a reliable and an efficient sampling plan is mandatory. Although there have been a remarkable progress due to the development of various procedures for computing the sample size and selecting the appropriate point distribution, still users are inconversant with the characteristics and applications of the available sampling methods due to the absence of a proper review. Accordingly, a systematic review, giving insight into the various strategies available for the sample size and the point distribution, is presented. In this article, different algorithms and their application in the estimation of sample size and point distribution have been reviewed comprehensively. The classification of sampling methods and the importance of adaptive sampling have also been described. It has been concluded that the effectiveness of inspection process or the performance of coordinate measuring machine can be escalated through the application of a suitable sampling strategy. Therefore, the metrologists should either develop an effective method for defining sampling strategy or select the most suitable method from the available resources before carrying out the inspection process.