The present study aimed to assess and measure the effects of breed, genetic merit for production traits, and feeding systems (FS) on the ability of dairy cows to ensure pregnancy through its components (fertilization, embryonic losses, recalving). An experiment was conducted over 9 yr on Normande and Holstein cows assigned to contrasted FS. Diets were based on maize silage in winter and grazing plus concentrate in spring in the high FS group, and on grass silage in winter and grazing with no concentrate during spring in the low FS group. Within breeds, cows were classified into 2 groups with similar estimated breeding values (EBV) for milk solids: cows with high EBV for milk yield were included in a milk group and those with high EBV for fat and protein contents were included in a content group. Holstein cows produced more milk throughout lactation than Normande cows (the differential was greater in the high FS group, +2,294 kg, compared with +1,280 kg in the low FS group) and lost more body condition to nadir (the differential was greater in the high FS group, −1.00 point, compared with −0.80 point in the low FS group). Within breeds, milk solids production was similar between genetic groups. Cows in the high FS group produced more milk (+2,495 kg for Holstein and +1,481 kg for Normande cows) and had a higher body condition score at nadir (+0.40 point for Holstein and +0.60 point for Normande) than cows in the low FS group. Holstein cows had a lower recalving rate than Normande cows (−19 percentage units). We found no effect of genetic group and FS on fertility of Normande cows. However, according to FS, Holstein cows in the content group exhibited different fertility failure patterns. In the low FS group, Holstein cows in the content group had more nonfertilizations or early embryo mortality (+26 percentage units at first and second services) than Holstein cows in the milk group.In the high FS group, Holstein cows in the content group had a higher proportion of late embryo mortality than in the milk group (+10 percentage units at first and second services). We observed no effect of FS on recalving rate; however, indicators of energy balance (protein content or body condition score) were positively associated with successful conception and pregnancy. This suggested a link between genetic merit for fat and protein content and lower ability of dairy cows to ensure pregnancy because of more nonfertilizations and early or late embryo mortality. Key words: dairy cow, genetic merit, fertilization, pregnancy loss
INTRODUCTIONIn the past decades, reproductive performance of dairy cows has been declining and the strong genetic selection that was applied on production traits is considered to be responsible for this. Each step of the reproductive step has been affected: abnormal ovarian activity is more common in the current population (Gautam et al., 2010), the duration and intensity of estrus has markedly decreased (Kerbrat and Disenhaus, 2004), and the occurrence of pregnancy losses has increased (Grimard et al...