Nanosized zinc oxide (ZnO) particles modified with different silane coupling agents (octyltriethoxysilane (OTES), octadecyltriethoxysilane (ODTES) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS)) were synthesized in basic catalysis using the sol-gel method. The structure and morphology were characterized by dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) for bonding characteristics. The final hybrid materials were deposited on three types of metallic substrates (aluminum (Al), copper (Cu) and zinc (Zn)) in order to obtain coatings with ultrahydrophobic and anti-corrosion properties. Water wettability was studied revealing a contact angle of 145° for the surface covered with ZnO material modified with ODTES. The water contact angle increased with the length of the alkyl chain supplied by the silica precursor. The anti-corrosive behavior of ZnO/silane coupling agents particles deposited on metallic substrates was studied by the linear polarization technique in neutral medium.