Tinnitus is a symptom experienced by most people at least once in their lifetime. In most documented cases, a new onset of chronic tinnitus can be chronologically correlated with hearing loss. However, tinnitus can also occur in people with (apparently) normal hearing and remains without a traceable preceding cause. Despite the frequency of occurrence of tinnitus, the pathophysiological mechanisms are still not fully understood. A currently proposed hypothesis focuses on a "hidden" hearing loss called synaptopathy as a pathomechanism of tinnitus in normal hearing subjects. In the present study, the objective was to test whether finestructure audiometry or measurement of otoacoustic emissions can reveal possibly overlooked hearing impairment in presumed normalhearing individuals with chronic tinnitus. Thus, a hearing loss not audiologically detectable by the usual methods would supplement or replace the presumed synaptopathic pathomechanism. Another objective was to attempt to replicate the existing findings of another research group on synaptopathy as cause for tinnitus in normal hearing people. Schaette and McAlpine (2011) were able to demonstrate a significant difference in wave I amplitudes between groups of normal hearing subjects with and without chronic tinnitus by deriving clickevoked auditory brainstem potentials, thus supporting the hypothesis of synaptopathy18. For the present study, a cohort of normal-hearing subjects consisting of a group of tinnitus subjects (N = 15) and a control group (N = 14) was tested. Manual puretone audiometry with 11 test frequencies was conducted to determine hearing performance. Inclusion criteria were defined as air conducted hearing thresholds of 10 dB HL or lower. A deviation at a test frequency of 15 dB HL or less was tolerated. Data of tinnitus characteristics, such as pitch and intensity, were collected by presentation and matching of comparative tones, quality and subjective disturbance by questionnaire. Furthermore, data was obtained from both test groups by Békésy gliding frequency audiometry (794 test frequencies), as well as DPOAE measurement (36 test frequencies) and auditory brainstem response (ABR) audiometry (derivation of early auditory evoked potentials). The results showed a correlation of the determined tinnitus comparison pitch with the frequency location of the largest deviation (impairment) from the normal hearing curve in the Békésy gliding frequency audiometry (p = 0.032). All further analyses of the finestructure hearing curve (steepness of hearing loss, slope, number of hearing loss dips) showed no statistically significant relationship between the morphology of the fine-structure hearing curve and tinnitus characteristics. Finestructure measurement revealed areas of hearing loss that were not mapped in manual puretone audiometry. These "undetected" hearing losses would have led to the exclusion of 12 of 29 subjects (41.4 %) if the finestructure hearing curve had been used as an inclusion criterion. A direct comparison of the mean finestructure hearing curves of both test groups showed a statistically significant better mean hearing performance of the tinnitus group (p < 0.05) in 3 different test frequency ranges (1.5 kHz, 3 kHz, 7 kHz) with a maximum of 4 dB HL. Analy-sis of the mean amplitudes of wave I of the ABRs showed, contrary to expectation, a weak trend toward higher amplitudes in the tinnitus group (p = 0.06). According to Schaette and McAlpine (2011), synaptopathy pathogenesis should have resulted in an opposite trend, i.e., a decrease in wave I amplitude in the tinnitus group. As a secondary finding, a weak trend between wave I amplitude and subjectively perceived disturbance of tinnitus was demonstrated (p = 0.06). Statistical analysis of the parameters determined from the DPOAE measurements did not reveal any significant differences between the tinnitus group and control group. Direct comparison of the DPOAE and finestructure hearing curves, revealed a significant difference in the differences of the frequencyspecific measurements around 2.4 kHz (p = 0.007). The results of the study suggest that in previous studies with supposedly normal hearing tinnitus subjects there were unrecognized hearing losses that either went unrecognized by the screening by manual puretone audiometry, or subjects with previously aboveaverage hearing experienced a subtle spontaneous decrease in their hearing as tinnitus pathogenesis. This assumption is also supported by the fact that there is a significant correlation between the frequency range of the greatest hearing loss in the finestructure hearing curves and the tinnitus frequency. The suspected pathomechanism of synaptopathy in "normal hearing" subjects with tinnitus could not be confirmed. The correlation between wave I amplitudes and subjectively perceived disturbance by tinnitus, indicated by the data of this study, should be investigated in more detail in future studies. Further research with more accurate measurement methods and larger subject groups is needed to clarify the hypothesis "Genesis of chronic subjective tinnitus without hearing loss".