The mammalian pulvinar nucleus (PUL) establishes heavy interconnections with the parietal lobe, but the precise nature of these connections is only partially understood. To examine the distribution of corticopulvinar cells in the cat, we injected the PUL with retrograde tracers. Corticopulvinar cells were located in layers V and VI of a wide variety of cortical areas, with a major concentration of cells in area 7. To examine the morphology and distribution of corticopulvinar terminals, we injected cortical areas 5 or 7 with anterograde tracers. The majority of corticopulvinar axons were thin fibers (type I) with numerous diffuse small boutons. Thicker (type II) axons with fewer, larger boutons were also present. Boutons of type II axons formed clusters within restricted regions of the PUL. We examined corticopulvinar terminals labeled from area 7 at the ultrastructural level in tissue stained for γ-aminobutyric acid (GABA). By correlating the size of the presynaptic and postsynaptic profiles, we were able to quantitatively divide the labeled terminals into two categories: small and large (RS and RL, respectively). The RS terminals predominantly innervated small-caliber non-GABAergic (thalamocortical cell) dendrites, whereas the RL terminals established complex synaptic arrangements with dendrites of both GABAergic interneurons and non-GABAergic cells. Interpretation of these results using Sherman and Guillery's recent theories of thalamic organization (Sherman and Guillery [1998] Proc Natl Acad Sci U S A 95:7121-7126) suggests that area 7 may both drive and modulate PUL activity.
Indexing termscortex; thalamus; visual system; sensorimotor; ultrastructure The feline pulvinar nucleus (PUL) receives input from a wide array of cortical areas (Raczkowski and Rosenquist, 1983) as well as the pretectum (PT;Berman, 1977;Berson and Graybiel, 1978;Schmidt et al., 2001;Baldauf et al., 2005). However, the contribution of these inputs to the response properties of PUL neurons is unknown. The cells of the PUL have large visual receptive fields that often lack clear boundaries; they respond more robustly to diffuse illumination than to small visual cues (Godfraind et al., 1972;Mason, 1981 by saccadic eye movements. Sudkamp and Schmidt (2000) identified three general classes of neurons in the feline PUL: "S" neurons are active during saccadic eye movements, "V" neurons are responsive to visual stimuli and unresponsive to eye movements, and "SV" neurons respond to both stationary ON and OFF stimuli and to sudden stimulus shifts.These response properties are similar in many respects to those of neurons in the parietal cortex, an area that establishes extensive reciprocal connections with the PUL (de V Clüver and Campos-Ortega, 1969;Heath and Jones, 1971;Robertson and Cunningham, 1981;Niimi et al., 1983;Raczkowski and Rosenquist, 1983;Avendaño et al., 1985;Olson and Lawler, 1987). In the cat, these cortical areas are primarily located within the middle suprasylvian gyrus (MSg) or cytoarchitectonically in areas 5 and 7 (Gu...