Selective internal radiation therapy (SIRT) is one of the treatment options for liver tumors. Microspheres labelled with a therapeutic radionuclide (90Y or 166Ho) are injected into the liver artery feeding the tumor(s), usually achieving a high tumor absorbed dose and a high tumor control rate. This treatment adopts a theranostic approach with a mandatory simulation phase, using a surrogate to radioactive microspheres (99mTc-macroaggregated albumin, MAA) or a scout dose of 166Ho microspheres, imaged by SPECT/CT. This pre-therapy imaging aims to evaluate the tumor targeting and detect potential contraindications to SIRT, i.e., digestive extrahepatic uptake or excessive lung shunt. Moreover, the absorbed doses to the tumor(s) and the healthy liver can be estimated and used for planning the therapeutic activity for SIRT optimization. The aim of this review is to evaluate the accuracy of this theranostic approach using pre-therapy imaging for simulating the biodistribution of the microspheres. This review synthesizes the recent publications demonstrating the advantages and limitations of pre-therapy imaging in SIRT, particularly for activity planning.