BackgroundDrug–drug interactions (DDIs) are common and can result in patient harm. Electronic health records warn clinicians about DDIs via alerts, but the clinical decision support they provide is inadequate. Little is known about clinicians’ real-world DDI decision-making process to inform more effective alerts.ObjectiveApply cognitive task analysis techniques to determine informational cues used by clinicians to manage DDIs and identify opportunities to improve alerts.DesignClinicians submitted incident forms involving DDIs, which were eligible for inclusion if there was potential for serious patient harm. For selected incidents, we met with the clinician for a 60 min interview. Each interview transcript was analysed to identify decision requirements and delineate clinicians’ decision-making process. We then performed an inductive, qualitative analysis across incidents.SettingInpatient and outpatient care at a major, tertiary Veterans Affairs medical centre.ParticipantsPhysicians, pharmacists and nurse practitioners.OutcomesThemes to identify informational cues that clinicians used to manage DDIs.ResultsWe conducted qualitative analyses of 20 incidents. Data informed a descriptive model of clinicians’ decision-making process, consisting of four main steps: (1) detect a potential DDI; (2) DDI problem-solving, sensemaking and planning; (3) prescribing decision and (4) resolving actions. Within steps (1) and (2), we identified 19 information cues that clinicians used to manage DDIs for patients. These cues informed their subsequent decisions in steps (3) and (4). Our findings inform DDI alert recommendations to improve clinicians’ decision-making efficiency, confidence and effectiveness.ConclusionsOur study provides three key contributions. Our study is the first to present an illustrative model of clinicians’ real-world decision making for managing DDIs. Second, our findings add to scientific knowledge by identifying 19 cognitive cues that clinicians rely on for DDI management in clinical practice. Third, our results provide essential, foundational knowledge to inform more robust DDI clinical decision support in the future.