The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires' sizes are simulated using ANSYS workbench. The decrease of wires' diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181 μs, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a Φ 1 mm fissile bead and two Φ 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.