The integration of three-dimensional (3D) cameras into clinical practice for pre-operative planning and post-operative monitoring of rhinoplasties remains controversial. However, this technology offers the advantage of capturing the 3D surface without exposing patients to potentially harmful radiation. Continuous assessment allows the follow-up of swelling patterns, cartilage alignment, and bone remodeling. The primary objective of our study was to quantify changes in nasal structure before and after rhinoplasty by using 3D photography. Our study cohort consisted of 29 patients who underwent open structural rhinoplasty. We used the Artec Space Spider camera to acquire a total of 103 3D images. We collected pre-operative and at least two or three post-operative follow-up scans, which were taken one, three, and six months after surgery. We evaluated paired scans that included various time intervals to improve our understanding of swelling behavior and to ensure an objective analysis of changes. Eleven specific anatomical landmarks were identified for measurement. Two independent raters determined the distances between these landmarks over time. The calculation of intraclass correlation coefficients showed low inter-rater variability. Statistically significant changes over time (p < 0.05) were observed for various anatomical landmarks, including soft tissue nasion, soft tissue orbitale right, soft tissue maxillofrontale left, soft tissue maxillofrontale right, nasal bridge, and nasal break point. Conversely, no significant changes (p > 0.05) were observed in the measurements of soft tissue orbitale left, pronasale, subnasale, alare right, or alare left. A visual assessment was conducted using surface distance maps. The results indicate that the complete decrease in swelling takes at least 6 months or even longer. Additionally, 3D photography can provide an objectively comparable analysis of the face and external contours. Furthermore, it allows for a comparison of external contours and therefore pre- and post-operative differences.