Comparison of two different artificial neural network models for prediction of soil penetration resistance
İlker Ünal,
Önder Kabas,
Salih Sözer
Abstract:A time-varying, nonlinear soil-plant system contains many unknown elements that can be quantified based on analytical methodologies. Artificial Neural Networks (ANNs) are a widely used mathematical computing, modelling, and predicting method that estimates unknown values of variables from known values of others. This paper aims to simulate relationship between soil moisture, bulk density, porosity ratio, depth, and penetration resistance and to estimate soil penetration resistance with the help of ANNs. For th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.