Grazing ruminants suffer from various helminth infections particularly those caused by gastrointestinal nematode (GIN) parasites, which have a considerable impact on their welfare and productivity. Treatment predominantly relies on macrocyclic lactone (ML) anthelmintics, but their widespread application has led to the emergence of drug-resistant parasite populations worldwide. The standard method for detecting resistance, the Faecal Egg Count Reduction Test (FECRT), is susceptible to misinterpretation, leading to flawed management decisions that undermine parasite control efforts. Thus, there is a pressing need for robust resistance detection methods in field parasites. We investigated the potential of the WMicrotrackerTM (WMi) motility assay, previously unexplored in ML resistance assessment. The assay first compared ivermectin (IVM) susceptibility among wild type Bristol N2 (N2B), IVM-selected (IVR10), and nhr-8 loss-of-function (AE501; nhr8(ok186)) Caenorhabditis elegans strains. Dose-response curves indicated differences in IVM susceptibility among strains, with IVR10 exhibiting a 2.12-fold decrease in sensitivity compared to N2B. Cross resistance between IVM, moxidectin (MOX), and eprinomectin (EPR) was explored, demonstrating reduced susceptibility in IVR10 across all drugs compared to N2B. Further investigation was conducted using Haemonchus contortus (H. contortus) to assess the assay's applicability in discriminating susceptible from resistant isolates. Results revealed significant differences in drug potency between susceptible and resistant isolates, with MOX demonstrating the highest efficacy. Resistance factors (RF) highlighted the substantial resistance of the resistant isolate to EPR. The motility assay effectively discriminated susceptible from resistant isolates in both C. elegans and H. contortus. Our findings demonstrate, for the first time, the relevance of the motility assay by WMi as a functional indicator of resistance in nematodes, offering a promising avenue for detecting resistance to MLs. This research sheds light on a novel approach for monitoring drug resistance, vital for effective parasite management strategies.