Ventricular-vascular coupling in endurance athletes remains incompletely understood. The purpose of this study was to determine the ascending aortic impedance in endurance athletes and explore its associations with traditional cardiovascular measurements. In 15 young male endurance runners and 19 young healthy men, time-resolved (CINE) 2D phase-contrast MRI quantified the ascending aortic flow while the pressure waveform was simultaneously collected via a generalized transfer function. The aortic impedance modulus and phase were calculated in the frequency domain while characteristic impedance (ZcF) was calculated by averaging moduli between the 4th and 8th heart rate (HR) harmonics. Stroke volume (SV), left ventricular (LV) morphometry, double product, aortic compliance, and total peripheral resistance (TPR) were also measured. Endurance athletes had higher SV, slower HR, greater LV end-diastolic volume and mass, and lower double product than sedentary participants (all p < 0.05). ZcF was significantly lower in athletes than in sedentary participants (73.3±19.2 vs. 93.4±19.0 dyn-sec/cm5, p = 0.005). Furthermore, ZcF was negatively correlated with SV (r = -0.691) and aortic compliance (r = -0.601) but was positively correlated with double product (r = 0.445) and TPR (r = 0.458) (all p < 0.05). Multivariate analysis revealed that ZcF was the strongest predictor of SV followed by TPR and HR (adjusted R2 = 0.788, p < 0.001). Therefore, our findings collectively suggest that LV afterload quantified by aortic ZcF is significantly lower in endurance athletes than in sedentary adults. The lower pulsatile LV afterload may contribute to greater SV in endurance athletes.