2019
DOI: 10.1088/1742-6596/1366/1/012128
|View full text |Cite
|
Sign up to set email alerts
|

Comparison on the Performance of Several Outlier Detection Methods in Univariate Circular Wrapped Normal Sample

Abstract: This study focuses on detecting a single outlier in circular data generated from a wrapped normal (WN) distribution. The discordancy tests of M, A and G 1 statistics are used to detect single outlier in simulated data generated from wrapped normal distribution. The purpose of this study is to make a comparison on the performance of these statistics via Monte Carlo simulation by obtaining the proportion of correct outlier detection for each statistic. In this study, Splus-language and R-langua… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?