A finite element approach to the elastic flow of a curve coupled with a diffusion equation on the curve is analysed. Considering the graph case, the problem is weakly formulated and approximated with continuous linear finite elements, which is enabled thanks to second-order operator splitting. The error analysis builds up on previous results for the elastic flow. To obtain an error estimate for the quantity on the curve a better control of the velocity is required. For this purpose, a penalty approach is employed and then combined with a generalised Gronwall lemma. Numerical simulations support the theoretical convergence results. Further numerical experiments indicate stability beyond the parameter regime with respect to the penalty term which is covered by the theory.