The accurate mapping of crop types is crucial for ensuring food security. Remote Sensing (RS) satellite data have emerged as a promising tool in this field, offering broad spatial coverage and high temporal frequency. However, there is still a growing need for accurate crop type classification methods using RS data due to the high intra- and inter-class variability of crops. In this vein, the current study proposed a novel Parallel-Cascaded ensemble structure (Pa-PCA-Ca) with seven target classes in Google Earth Engine (GEE). The Pa section consisted of five parallel branches, each generating Probability Maps (PMs) for different target classes using multi-temporal Sentinel-1/2 and Landsat-8/9 satellite images, along with Machine Learning (ML) models. The PMs exhibited high correlation within each target class, necessitating the use of the most relevant information to reduce the input dimensionality in the Ca part. Thereby, Principal Component Analysis (PCA) was employed to extract the top uncorrelated components. These components were then utilized in the Ca structure, and the final classification was performed using another ML model referred to as the Meta-model. The Pa-PCA-Ca model was evaluated using in-situ data collected from extensive field surveys in the northwest part of Iran. The results demonstrated the superior performance of the proposed structure, achieving an Overall Accuracy (OA) of 96.25% and a Kappa coefficient of 0.955. The incorporation of PCA led to an OA improvement of over 6%. Furthermore, the proposed model significantly outperformed conventional classification approaches, which simply stack RS data sources and feed them to a single ML model, resulting in a 10% increase in OA.