In this article, the formation mechanism of transverse corner cracks on a lowcarbon steel continuous-casting slab was investigated. The factors influencing the transverse corner cracks were discussed. The hot ductility of the lowcarbon steel within 600°C and 1250°C was detected using a thermal simulator Gleeble 1500 (Dynamic Systems, Inc., Poestenkill, NY) to determine the embrittling temperature range of the steel. The temperature of the slab varied with time, especially at the slab corner, and it was calculated and discussed. It was found that transverse corner cracks were generated on the ferrite films along grain boundaries, and there was little decarburization layer near the cracks. According to the calculated temperature at slab corner, the cooling water flow rate and cooling strategy were optimized by adjusting the cooling water flow rate at each spray cooling zone to avoid the embrittling temperature range at the bending and straightening segments of the caster. As a result, the transverse corner cracks were successfully weakened.