As the imaging distance and focal length of photoelectric systems increase, the requirements for line-of–sight stabilization of optical inertial stabilized platforms (ISPs) become higher. Disturbance rejection directly determines the stability accuracy of optical inertial stabilized platforms. However, the accurate observation and suppression of wide-band and rapidly changing disturbances remains a challenge in current engineering applications. This paper proposes a robust extended sliding mode observer (ESMO) method to improve disturbance estimation performance. First, the linear extended state observer (LESO) is designed by taking the total disturbances as extended states. Then, a sliding mode observer (SMO) is incorporated in the extended states of the extended observer, forming a robust ESMO. Subsequently, the robustness and convergence characteristics of the proposed method are mathematically proved, revealing that it operates robustly without knowing the disturbance’s upper bound and offers faster dynamics and higher accuracy than the LESO. Finally, a series of simulation experimental tests are performed to demonstrate the effectiveness of the proposed method. The proposed method observes wide-band and rapidly changing disturbances utilizing the rapidly switching characteristic of the SMO and smooths the jitter of the SMO by cascading sliding mode estimation to the differentiation term of extended observation, achieving the integral effect of the reaching law. Meanwhile, this method only requires adjusting two parameters, making it suitable for engineering applications. It can be effectively used in optical inertial stabilized platform control systems for disturbance estimation and compensation.