The alien invasive vines Vincetoxicum rossicum and Vincetoxicum nigrum (swallow-wort) are of major concern in eastern North America, where both species invade forested landscapes and threaten faunal and plant diversity. Among the few native natural enemies reported in Eurasia, the specialist chrysomelid, Chrysochus (Eumolpus) asclepiadeus (Coleoptera; Chrysomelidae), feeds on Vincetoxicum both above ground (as adults) and below ground (as larvae). The goal of our study was to assess the potential for using this beetle to manage invasive Vincetoxicum spp. in North America by quantifying the impact of herbivory by C. asclepiadeus on Vincetoxicum and determining whether this effect was influenced by plant density (''Allee effect''). Experimental work was carried out using a split plot design in the field in southern France. Pots of V. nigrum and V. hirundinaria, a substitute for V. rossicum, were planted at high (255 plants/m 2 ), medium (127 plants/m 2 ), and low (32 plants/m 2 ) plant densities, and received treatments of 0 (control), 2 or 4 C. asclepiadeus adult beetles/pot. Leaf damage, root and shoot biomass, and quantity of seeds were measured after 4 weeks of adult feeding. Densities of 2 and 4 beetles/pot caused similar damage, with significant reductions in plant biomass at low plant density. While V. hirundinaria increased allocation of resources to roots in response to herbivory, V. nigrum did not. Seed production was greatest for both species grown at low plant densities, but only V. nigrum produced fewer seeds in response to herbivory. Our results, based on the effects of herbivory by C. asclepiadeus adults, suggest that if this beetle were to be introduced into North America for the management of Vincetoxicum spp. such as V. rossicum, reductions in plant biomass and spread would be greatest if beetles were released on edges or in newlyestablished satellite populations at low plant densities. In the case of V. nigrum, beetles could be released irrespective of plant density as reproductive output and seed dispersal would be reduced similarly.