The effects of food deprivation and feeding ratio on the growth, feed utilization and body composition of juvenile olive flounder Paralichthys olivaceus were investigated in 810 juvenile fish averaging 6.4 g in weight randomly distributed in 27 400-L flowthrough tanks. A 3 [food deprivation: 8-week feeding without food deprivation (8W), 7-week feeding after 1-week food deprivation (7W) and 6-week feeding after 2-week food deprivation (6W)] × 3 (feeding ratio: 100%, 95% and 90% of satiation, hereafter denoted by 100, 95 and 90, respectively) factorial design was applied. The weight gain of the fish was significantly affected by both food deprivation and feeding ratio. The weight gain of the fish under the 8W-100 treatment was higher than that of those under the 7W-95, 7W-90, 6W-100, 6W-95 and 6W-90 treatments, but did not differ from those of fish under the 8W-95, 8W-90 and 7W-100 treatments. The specific growth rate (SGR) and the feed intake of the fish were affected by both food deprivation and feeding ratio. However, the feed conversion ratio (FCR) was unaffected by both food deprivation and feeding ratio. The protein efficiency ratio (PER) was affected by the feeding ratio, but not by food deprivation. The protein retention (PR) was affected by food deprivation, but not by feeding ratio. Juvenile olive flounder subjected to 1-week food deprivation at 100% satiation (7W-100 treatment) achieved full compensatory growth.