We examined the impacts of aspirin and metformin on the life history of the cricket Acheta domesticus (growth rate, maturation time, mature body size, survivorship, and maximal longevity). Both drugs significantly increased survivorship and maximal life span. Maximal longevity was 136 days for controls, 188 days (138 % of controls) for metformin, and 194 days (143 % of controls) for aspirin. Metformin and aspirin in combination extended longevity to a lesser degree (163 days, 120 % of controls). Increases in general survivorship were even more pronounced, with low-dose aspirin yielding mean longevity 234 % of controls (i.e., health span). Metformin strongly reduced growth rates of both genders (<60 % of controls), whereas aspirin only slightly reduced the growth rate of females and slightly increased that of males. Both drugs delayed maturation age relative to controls, but metformin had a much greater impact (>140 % of controls) than aspirin (~118 % of controls). Crickets maturing on low aspirin showed no evidence of a trade-off between maturation mass and life extension. Remarkably, by 100 days of age, aspirin-treated females were significantly larger than controls (largely reflecting egg complement). Unlike the reigning dietary restriction paradigm, low aspirin conformed to a paradigm of Beat more, live longer.^In contrast, metformin-treated females were only~67 % of the mass of controls. Our results suggest that hormetic agents like metformin may derive significant trade-offs with life extension, whereas health and longevity benefits may be obtained with less cost by agents like aspirin that regulate geroprotective pathways.