2001
DOI: 10.1061/(asce)0887-3801(2001)15:2(89)
|View full text |Cite
|
Sign up to set email alerts
|

Competent Genetic-Evolutionary Optimization of Water Distribution Systems

Abstract: A genetic algorithm (GA) has been applied to the optimal design and rehabilitation of a water distribution system. Many of the previous applications have been limited to small water distribution systems, where the computer time used for solving the problem has been relatively small. In order to apply genetic and evolutionary optimization technique to a large-scale water distribution system, this paper employs one of competent genetic-evolutionary algorithms  a messy genetic algorithm to enhance the efficiency… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
44
0
1

Year Published

2005
2005
2018
2018

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 147 publications
(46 citation statements)
references
References 17 publications
0
44
0
1
Order By: Relevance
“…A Messy GA, on the other hand, uses variable-length strings that combine short, well-tested building blocks to form longer, more complex strings that increasingly cover all features of a problem under investigation. Examples of Messy GAs adapted and used for the design of water distribution networks are presented by Halhal et al (1997), Walters et al (1999) and Wu and Simpson (2001).…”
Section: Current Statusmentioning
confidence: 99%
“…A Messy GA, on the other hand, uses variable-length strings that combine short, well-tested building blocks to form longer, more complex strings that increasingly cover all features of a problem under investigation. Examples of Messy GAs adapted and used for the design of water distribution networks are presented by Halhal et al (1997), Walters et al (1999) and Wu and Simpson (2001).…”
Section: Current Statusmentioning
confidence: 99%
“…The complete setting can be found in (Wu and Simpson, 2001). The second case is the New York Tunnel water supply network (Figure 2), which similarly to the Hanoi water distribution problem, has been studied extensively by various researchers (Savic and Walters, 1995;Maier et al, 2003;Matías, 2003).…”
Section: Testing Benchmark Problemsmentioning
confidence: 99%
“…For the last decade, many researchers in the field have shifted direction, leaving aside traditional optimization techniques based on linear and nonlinear programming and embarking on the implementation of Evolutionary Algorithms: Genetic Algorithms (Savic and Walters, 1995;Wu and Simpson, 2001;Matías, 2003;Wu and Walski, 2005); Ant Colony Optimization (Maier et al, 2003;Zecchin et al, 2005); Simulated Annealing (Cunha and Sousa, 1999); Shuffled Complex Evolution (Liong and Atiquzzaman, 2004);and Harmony Search (Geem, 2006), amongst others.…”
Section: Introductionmentioning
confidence: 99%
“…Durante la última década, muchos investigadores han empezado a hacer uso de modernas técnicas evolutivas de optimización, dejando atrás otros métodos más tradicionales basados en la programación lineal y no lineal. Refiriéndonos exclusivamente al campo del agua, los algoritmos genéticos han sido los más utilizados (Savic y Walters, 1997;Wu y Simpson, 2001;Matías, 2003;Wu y Walski, 2005), aunque también han sido incorporadas otras técnicas, como las basadas en las colonias de hormigas (ACO, Ant Colony Optimization) (Zecchin et al, 2006;Montalvo et al, 2007a); Simulated Annealing, también denominada 'recocido simulado' (Cunha y Sousa, 1999); Shuffled Complex Evolution (Liong y Atiquzzama, 2004); Harmony Search o búsqueda de la armonía (Geem, 2006); Particle Swarm Optimization (PSO), basada en la inteligencia colectiva de los sistemas de partículas, Montalvo et al, 2008e). Entre las ventajas que han propiciado el uso creciente de los algoritmos evolutivos en el diseño óptimo de SDA, pueden citarse las siguientes:…”
Section: Comentariosunclassified
“…During the last decade, many researchers have started using modern evolutionary optimisation techniques, leaving aside more traditional methods based on linear and nonlinear programming. In the field of water systems, genetic algorithms have been the most used (Savic y Walters, 1997;Wu y Simpson, 2001;Matías, 2003;Wu y Walski, 2005), although other techniques based on ant colonies (ant colony optimisation or ACO) (Zecchin et al, 2006;Montalvo et al, 2007a) have been used; as well as simulated annealing (Cunha y Sousa, 1999); shuffled complex evolution (Liong y Atiquzzama, 2004); harmony search (Geem, 2006); and particle swarm optimisation (PSO) based on the collective intelligence of systems of particles Montalvo et al, 2008e). The advantages of the growing use of evolutionary algorithms in the optimal design of WDS include:…”
Section: Observationsmentioning
confidence: 99%