Competition and resource partitioning can have profound implications for individuals, populations and communities, and thus food webs, ecosystems and the management of biota and environments. In many species, the impacts of competition and resource partitioning are believed to be most severe during early life, but our understanding of the mechanisms and implications is incomplete. This study revealed short-term variations in both the occurrence and direction of competition during the early life of roach Rutilus rutilus and common bream Abramis brama, two of the most widespread and abundant fish species in Europe. There was also evidence of resource partitioning when small taxa dominated the zooplankton, but not when larger taxa were more abundant. In spite of the differences in foraging ecology, there were no significant differences in growth or nutritional condition in allopatry and sympatry. Similar to the concept of condition-specific competition, when competitive abilities vary along environmental gradients, the impacts of interspecific interactions on foraging ecology, growth and condition are dynamic and likely vary according to temporal fluctuations in prey availability. This is important because short-term incidences of competition could have cascading effects on food webs, even when no impacts on growth rates or condition are detected.