In recent years, with the development of the new energy industry, the demand for cobalt as a raw material for power batteries has been increasing. However, China itself has a shortage of cobalt resources. Therefore, overcoming poor resource conditions and enhancing the international competitiveness of the cobalt industry have become urgent issues. This paper is based on global trade data on cobalt resources from 2007 to 2020. A panel regression model is constructed from the perspective of trade networks, and Entropy-Topsis is used to construct a comprehensive evaluation index system for the international competitiveness of critical nonferrous metals. This study empirically examines the impact of the trade network characteristics of cobalt resources on international competitiveness, assigns practical significance to trade network characteristic indicators, and analyses the overall competitiveness changes in the global cobalt industry chain and its upstream, midstream, and downstream sectors. The research findings reveal the following key points: (1) In recent years, the competitive focus of the cobalt industry chain in various countries has shifted from upstream and midstream to midstream and downstream, with increasingly fierce trade competition downstream, gradually tilting toward countries such as South Korea, Japan, and China. (2) Cobalt trade competition, which was initially characterized by competition among multiple countries, has gradually become more centralized and stable, with differences in the competitiveness of various countries occurring at different stages of the cobalt industry chain. (3) Network centrality and network heterogeneity both have a significant promoting effect on the international competitiveness of the industry, while network connectivity has a significant inhibitory effect on the improvement of international competitiveness.