. Can. J. Chem. 72, 1230Chem. 72, (1994.The Generalized-Valence-Bond-Perfect-Pairing (GVB-PP) method has been used to investigate the structural behaviour, energy, and dipole moment along the reaction coordinates for propene tt H + cis-or trans-propen-1-yl. Geometry optimizations were carried out at the GVB(9)lSTO-3G level (complete valence shell) for the minimum energy propene structure (complete optimization) and for numerous structures up to r(C-H) = 10 A (only the elongated C-H distance kept fixed). The dissociation curves are smooth, without a maximum, and yield predicted dissociation energies of propene to H + cis-propen-1-yl and H + trans-propen-1-yl of 555.8 and 554.8 kJ mol-', respectively. These values are within several percent of those obtained for C-H bond rupture in ethylene using GVB and MCSCF methods with the same basis set. They are obviously too high but they confirm that removal of a hydrogen atom from the CH? moiety in propene requires about the same energy as removal of a hydrogen atom from ethylene. GVB(7)/6-31GllGVB(9)/STO-3G computations lower the predicted dissociation energies of propene + H + cis-propen-1-yl and H + trans-propen-1 -yl to 448.2 and 448.6 kJ mol-', respectively. The reduced energy concept (ER = (E, -E,)lDe) is applied to the reaction coordinates. Linear behaviour for In ER versus bond length is observed at long bond distances. At r(C-H) = 3 A, the values of the slopes, d(ln ER)ldr(C-H), which are related to the effective Morse constant B are -3.73 and -3.74 (GVB(9)lSTO-3G) and -2.75 and -2.8 1 (GVB(7)/6-3 1 GllGVB(9)lSTO-3G) for the H + cis-and H + trans-propen-1-yl reaction coordinates, respectively. On a utilisC la mCthode de l'appariement parfait de la liaison de valence gCnCraliste (GVB-PP) pour Ctudier le comportement structurel, 1'Cnergie et le moment dipolaire le long des coordonnCes de la rCaction propene tt H +cis-ou trans-propCn-1-yle. On a effectuC les optimisations de gtomCtrie au niveau GVB(9)lSTO-3G (couche de valence complete) pour la structure du propkne 2 Cnergie minimale (optimisation complkte) et pour de nombreuses structures jusqu'2 r(C-H) = 10 A (seule la distance C-H allongee est maintenue constante). Les courbes de dissociation sont lisses, sans un maximum, et elles conduisent 2 prCdire des Cnergies de dissociation pour les rCactions du propkne en H + cis-propen-1-yle et en H + trans-propCn-1-yle de 555,8 i t 554,8 kJ1 mol respectivement. Ces valeurs sont 2 1'intCrieur des limites de quelques pour-cent de celles obtenues pour la rupture de la liaison C-H dans 1'Cthylkne lorsque des calculs ont Cte effectuees par les mCthodes GVB et MCSCF, avec le mCme ensemble de base. Ces valeurs sont Cvidemment trop ClevCes, mais elles confirment que l'enlkvement d'un atome d'hydrogkne a partir de la portion CH, du propkne nCcessite approximativement la mCme Cnergie que l'enlkvement d'un atome d'hydrogkne a partir de 1'Cthylkne. Des calculs au niveau GVB(7)16-3 1GllGVB(9)lSTO-3G abaissent les valeurs des Cnergies de dissociation des rtactions du propkne en H + ...