Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The correctness of complex software depends on the correctness of both the source code and the compilers that generate corresponding binary code. Compilers must do more than preserve the semantics of a single source file: they must ensure that generated binaries can be composed with other binaries to form a final executable. The compatibility of composition is ensured using an Application Binary Interface (ABI), which specifies details of calling conventions, exception handling, and so on. Unfortunately, there are no official ABIs for concurrent programs, so different atomics mappings, although correct in isolation, may induce bugs when composed. Indeed, today, mixing binaries generated by different compilers can lead to an erroneous resulting binary. We present mix testing : a new technique designed to find compiler bugs when the instructions of a C/C++ test are separately compiled for multiple compatible architectures and then mixed together. We define a class of compiler bugs, coined mixing bugs , that arise when parts of a program are compiled separately using different mappings from C/C++ atomic operations to assembly sequences. To demonstrate the generality of mix testing, we have designed and implemented a tool, atomic-mixer, which we have used: (a) to reproduce one existing non-mixing bug that state-of-the-art concurrency testing tools are limited to being able to find (showing that atomic-mixer at least meets the capabilities of these tools), and (b) to find four previously-unknown mixing bugs in LLVM and GCC, and one prospective mixing bug in mappings proposed for the Java Virtual Machine. Lastly, we have worked with engineers at Arm to specify, for the first time, an atomics ABI for Armv8, and have used atomic-mixer to validate the LLVM and GCC compilers against it.
The correctness of complex software depends on the correctness of both the source code and the compilers that generate corresponding binary code. Compilers must do more than preserve the semantics of a single source file: they must ensure that generated binaries can be composed with other binaries to form a final executable. The compatibility of composition is ensured using an Application Binary Interface (ABI), which specifies details of calling conventions, exception handling, and so on. Unfortunately, there are no official ABIs for concurrent programs, so different atomics mappings, although correct in isolation, may induce bugs when composed. Indeed, today, mixing binaries generated by different compilers can lead to an erroneous resulting binary. We present mix testing : a new technique designed to find compiler bugs when the instructions of a C/C++ test are separately compiled for multiple compatible architectures and then mixed together. We define a class of compiler bugs, coined mixing bugs , that arise when parts of a program are compiled separately using different mappings from C/C++ atomic operations to assembly sequences. To demonstrate the generality of mix testing, we have designed and implemented a tool, atomic-mixer, which we have used: (a) to reproduce one existing non-mixing bug that state-of-the-art concurrency testing tools are limited to being able to find (showing that atomic-mixer at least meets the capabilities of these tools), and (b) to find four previously-unknown mixing bugs in LLVM and GCC, and one prospective mixing bug in mappings proposed for the Java Virtual Machine. Lastly, we have worked with engineers at Arm to specify, for the first time, an atomics ABI for Armv8, and have used atomic-mixer to validate the LLVM and GCC compilers against it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.