Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The gate-based model is one of the leading quantum computing paradigms for representing quantum circuits. Within this paradigm, a quantum algorithm is expressed in terms of a set of quantum gates that are executed on the quantum hardware over time, subject to a number of constraints whose satisfaction must be guaranteed before running the circuit, to allow for feasible execution. The need to guarantee the previous feasibility condition gives rise to the Quantum Circuit Compilation Problem (QCCP). The QCCP has been demonstrated to be NP-Complete, and can be considered as a Planning and Scheduling problem. In this paper, we consider quantum compilation instances deriving from the general Quantum Approximation Optimization Algorithm (QAOA), applied to the MaxCut problem, devised to be executed on Noisy Intermediate Scale Quantum (NISQ) hardware architectures. More specifically, in addition to the basic QCCP version, we also tackle other variants of the same problem such as the QCCP-X (QCCP with crosstalk constraints), the QCCP-V (QCCP with variable qubit state initialization), as well as the QCCP-VX that includes both previous variants. All problem variants are solved using genetic algorithms. We perform an experimental study across a conventional set of instances taken from the literature, and show that the proposed genetic algorithm, termed $$GA_{VX}$$ G A VX , outperforms previous approaches in the literature.
The gate-based model is one of the leading quantum computing paradigms for representing quantum circuits. Within this paradigm, a quantum algorithm is expressed in terms of a set of quantum gates that are executed on the quantum hardware over time, subject to a number of constraints whose satisfaction must be guaranteed before running the circuit, to allow for feasible execution. The need to guarantee the previous feasibility condition gives rise to the Quantum Circuit Compilation Problem (QCCP). The QCCP has been demonstrated to be NP-Complete, and can be considered as a Planning and Scheduling problem. In this paper, we consider quantum compilation instances deriving from the general Quantum Approximation Optimization Algorithm (QAOA), applied to the MaxCut problem, devised to be executed on Noisy Intermediate Scale Quantum (NISQ) hardware architectures. More specifically, in addition to the basic QCCP version, we also tackle other variants of the same problem such as the QCCP-X (QCCP with crosstalk constraints), the QCCP-V (QCCP with variable qubit state initialization), as well as the QCCP-VX that includes both previous variants. All problem variants are solved using genetic algorithms. We perform an experimental study across a conventional set of instances taken from the literature, and show that the proposed genetic algorithm, termed $$GA_{VX}$$ G A VX , outperforms previous approaches in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.