The alternative pathway of complement is important in innate immunity, attacking not only microbes but all unprotected biological surfaces through powerful amplification. It is unresolved how host and nonhost surfaces are distinguished at the molecular level, but key components are domains 19-20 of the complement regulator factor H (FH), which interact with host (i.e., nonactivator surface glycosaminoglycans or sialic acids) and the C3d part of C3b. Our structure of the FH19-20:C3d complex at 2.3-Å resolution shows that FH19-20 has two distinct binding sites, FH19 and FH20, for C3b. We show simultaneous binding of FH19 to C3b and FH20 to nonactivator surface glycosaminoglycans, and we show that both of these interactions are necessary for full binding of FH to C3b on nonactivator surfaces (i.e., for target discrimination). We also show that C3d could replace glycosaminoglycan binding to FH20, thus providing a feedback control for preventing excess C3b deposition and complement amplification. This explains the molecular basis of atypical hemolytic uremic syndrome, where mutations on the binding interfaces between FH19-20 and C3d or between FH20 and glycosaminoglycans lead to complement attack against host surfaces. structure and function | X-ray crystallography | hemolysis | kidney diseases | human mutations P reviously unencountered microbes invading a human body must be rapidly recognized and eliminated. This is the function of innate immunity, which includes the alternative pathway (AP) of complement. AP components can attack targets with hydroxyl or amine groups (i.e., all biological surfaces). This is a powerful defense mechanism, because there is rapid amplification leading to efficient opsonization or target lysis by the membrane attack complex (MAC). The AP attack is, therefore, also potentially dangerous for the host if one's cells and acellular structures are not protected.The AP activation is based on spontaneous hydrolysis of C3 in plasma leading to production of C3b, which then randomly attaches onto any surface hydroxyl or amine group through a reactive thioester located on the C3d part [i.e., thioester domain (TED)] of C3b. If these surface-attached C3b molecules are not quickly inactivated to iC3b and C3d, C3b deposition is rapidly amplified by a positive enzymatic feedback loop, leading to opsonophagocytosis and formation of the lytic membrane attack complex. On host surfaces, which are naturally nonactivators of the AP, efficient down-regulation of bound C3b occurs in three ways: factor I-mediated cleavage of C3b to inactive iC3b, acceleration of the decay of the preformed C3 convertases, or inhibition of factor B binding to C3b. Factor H (FH) is required for all these. It also down-regulates C3b deposition on noncellular surfaces, such as the heparan sulfate-rich glomerular basement membrane. FH is, thus, essential for restricting AP attack against host surfaces while allowing AP attack against foreign surfaces (i.e., for target discrimination) (1). A long-standing central question in complemen...