Electrostatic effects
are ubiquitous in protein interactions and
are found to be pervasive in the complement system as well. The interaction
between complement fragment C3d and complement receptor 2 (CR2) has
evolved to become a link between innate and adaptive immunity. Electrostatic
interactions have been suggested to be the driving factor for the
association of the C3d:CR2 complex. In this study, we investigate
the effects of ionic strength and mutagenesis on the association of
C3d:CR2 through Brownian dynamics simulations. We demonstrate that
the formation of the C3d:CR2 complex is ionic strength-dependent,
suggesting the presence of long-range electrostatic steering that
accelerates the complex formation. Electrostatic steering occurs through
the interaction of an acidic surface patch in C3d and the positively
charged CR2 and is supported by the effects of mutations within the
acidic patch of C3d that slow or diminish association. Our data are
in agreement with previous experimental mutagenesis and binding studies
and computational studies. Although the C3d acidic patch may be locally
destabilizing because of unfavorable Coulombic interactions of like
charges, it contributes to the acceleration of association. Therefore,
acceleration of function through electrostatic steering takes precedence
to stability. The site of interaction between C3d and CR2 has been
the target for delivery of CR2-bound nanoparticle, antibody, and small
molecule biomarkers, as well as potential therapeutics. A detailed
knowledge of the physicochemical basis of C3d:CR2 association may
be necessary to accelerate biomarker and drug discovery efforts.