Let f be an
$L^2$
-normalized holomorphic newform of weight k on
$\Gamma _0(N) \backslash \mathbb {H}$
with N squarefree or, more generally, on any hyperbolic surface
$\Gamma \backslash \mathbb {H}$
attached to an Eichler order of squarefree level in an indefinite quaternion algebra over
$\mathbb {Q}$
. Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate
$$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$
with absolute implied constant. For a cuspidal Maaß newform
$\varphi $
of eigenvalue
$\lambda $
on such a surface, we prove that
$$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$
We establish analogous estimates in the setting of definite quaternion algebras.