2018
DOI: 10.1007/s11590-018-1234-1
|View full text |Cite
|
Sign up to set email alerts
|

Complementarity problems over a hypermatrix (tensor) set

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2019
2019
2020
2020

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…As a natural extension of the linear complementarity problem, the TCP( , A) emerged from the tensor community in 2015 [1]. In recent several years, the TCP( , A) has been a hot topic and many theoretical results have been obtained, including the nonemptiness and/or compactness of solution set [4][5][6][7][8][9][10][11][12][13][14][15][16], the existence of unique solution [7,8,14,[17][18][19][20][21][22], error bound theory [23][24][25], strict feasibility [22,26], and so on. Several algorithms for solving the TCP( , A) have also been proposed [27][28][29][30][31].…”
Section: Introductionmentioning
confidence: 99%
“…As a natural extension of the linear complementarity problem, the TCP( , A) emerged from the tensor community in 2015 [1]. In recent several years, the TCP( , A) has been a hot topic and many theoretical results have been obtained, including the nonemptiness and/or compactness of solution set [4][5][6][7][8][9][10][11][12][13][14][15][16], the existence of unique solution [7,8,14,[17][18][19][20][21][22], error bound theory [23][24][25], strict feasibility [22,26], and so on. Several algorithms for solving the TCP( , A) have also been proposed [27][28][29][30][31].…”
Section: Introductionmentioning
confidence: 99%
“…
关键词 仿射变分不等式 张量空间 张量积 寡头垄断市场博弈
MSC (2020) 主题分类90C33, 65K10
引言Euclid 空间上的变分不等式和互补问题因其应用广泛而得到了深入研究 (参见文献 [1-3]). 近年 来, 变分不等式和互补问题的几个子类得到广泛关注, 包括张量互补问题 [4][5][6] 、多项式互补问题 [7][8][9] 、 张量集合上的互补问题 [10] 、随机张量互补问题 [11] 、张量变分不等式 [12] 和多项式变分不等式 [13] 等, 其中, 对张量互补问题的研究尤为突出, 在问题的可行性 [14] 、解的存在唯一性 [6,[15][16][17][18] 、解集的非空紧 性 [4, 5,[19][20][21][22][23][24] 和误差界理论 [25,26] 等方面均获得了很多的理论成果. 另外, 张量互补问题的数值求解方 法和实际应用也得到了研究 (参见文献 [27-32]).
…”
unclassified