MicroRNAs are small non-coding RNA molecules that can regulate gene expression by interacting with multiple mRNAs and inducing either translation suppression or degradation of mRNA. Recently, several miRNAs were identified as either promoters or suppressors of metastasis. However, it is unclear in which step(s) of the multistep metastatic cascade these miRNAs play a defined functional role. To study the functional importance of miRNAs in epithelial-mesenchymal transition (EMT), a process thought to initiate metastasis by enhancing the motility of tumor cells, we used a well established in vitro EMT assay: transforming growth factor--induced EMT in NMuMG murine mammary epithelial cells. We found that members of the miR-200 family, organized as two clusters in the genome, were repressed during EMT. Overexpression of each miRNA individually or as clusters in NMuMG cells hindered EMT by enhancing E-cadherin expression through direct targeting of ZEB1 and ZEB2, which encode transcriptional repressors of E-cadherin. In the 4TO7 mouse carcinoma cell line, which expresses low levels of endogenous E-cadherin and displays a mesenchymal phenotype, ectopic expression of the miR-200 family miRNAs significantly increased E-cadherin expression and altered cell morphology to an epithelial phenotype. Furthermore, ectopic expression of each miR-200 miRNA cluster significantly reduced the in vitro motility of 4TO7 cells in migration assays. These results suggested that loss of expression of the miR-200 family members may play a critical role in the repression of E-cadherin by ZEB1 and ZEB2 during EMT, thereby enhancing migration and invasion during cancer progression.MicroRNAs are a large family of small (21-23-nt) 4 RNAs that exhibit a high degree of structural and functional conservation throughout metazoan species. miRNAs are initially synthesized by polymerase II as long primary transcripts, which are subsequently processed into ϳ70-nt stem-loop pre-microRNAs by Drosha RNase III endonuclease (1) and are transported out of the nucleus by exportin 5 (2). Pre-microRNAs are further processed in the cytoplasm by Dicer to yield the final ϳ22-nt mature miRNAs (3). Binding of miRNA to target mRNAs with perfect or near perfect complementarity induces mRNA degradation, whereas imperfect complementarity often induces translational repression. It is believed that 7-8 nt in the 5Ј end of miRNAs, referred to as the seed sequence, are critical for efficient targeting.miRNAs have been implicated in regulating complex physiological processes such as embryogenesis (4), organ development (5), and oncogenesis (6, 7). However, the functional roles of a vast majority of miRNAs remain unknown. Recently, several groups have used a variety of model systems to identify different miRNAs as promoters or suppressors of metastasis (8 -12). Although these studies clearly implicate these miRNAs in metastasis, it is unclear which step(s) in the multistep metastatic progression these miRNAs regulate. In the present study, we sought to define a role for miRN...