Images in real surface defect detection scenes often suffer from uneven illumination. Retinex-based image enhancement methods can effectively eliminate the interference caused by uneven illumination and improve the visual quality of such images. However, these methods suffer from the loss of defect-discriminative information and a high computational burden. To address the above issues, we propose a joint-prior-based uneven illumination enhancement (JPUIE) method. Specifically, a semi-coupled retinex model is first constructed to accurately and effectively eliminate uneven illumination. Furthermore, a multiscale Gaussian-difference-based background prior is proposed to reweight the data consistency term, thereby avoiding the loss of defect information in the enhanced image. Last, by using the powerful nonlinear fitting ability of deep neural networks, a deep denoised prior is proposed to replace existing physics priors, effectively reducing the time consumption. Various experiments are carried out on public and private datasets, which are used to compare the defect images and enhanced results in a symmetric way. The experimental results demonstrate that our method is more conducive to downstream visual inspection tasks than other methods.