2013
DOI: 10.1142/s0219498813500230
|View full text |Cite
|
Sign up to set email alerts
|

Complementedly Dense Ideals: Decomposable Algebras

Abstract: An ideal I of a (non-associative) algebra A is dense if the multiplication algebra of A acts faithfully on I, and is complementedly dense if it is a direct summand of a dense ideal. We prove that every complementedly dense ideal of a semiprime algebra is a semiprime algebra, and determine its central closure and its extended centroid. We also prove that a semiprime algebra is an essential subdirect product of prime algebras if and only if, its extended centroid is a direct product of fields. This result is app… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?