2022
DOI: 10.1017/s0960129522000287
|View full text |Cite
|
Sign up to set email alerts
|

Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding

Abstract: By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called second-order computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of $\Sigma$ -monoid.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?