We present accurate calculations of the non‐autoionizing
Σ1,3g− and
Σ1,3u− doubly excited states of the H2 molecule using full configuration interaction with Hartree–Fock molecular orbitals and Heitler–London atomic orbitals. We consider the united atom configurations from He(2p2p) up to He(2p8g) and dissociation products from H2(2p + 2p) up to H2(2p + 6ℓ). Born–Oppenheimer calculations are carried out with extended and optimized Slater‐type orbitals for a total of 40 states, 10 for each symmetry, covering the internuclear distances from the united atom to dissociation, which, for some states, is reached beyond 100 a0. Occurrences of repulsive states cleanly interlaced between bound states with many vibrational levels are reported. Some of the potential minima are deep enough to accommodate many vibrational levels (up to 50). Noteworthy large equilibrium minima, like Req = 46.0 a0 in the
Σ3u− state dissociating as (2p + 6h) and with 18 vibrational levels. The occurrence of vertical excitations from the singly excited manifolds is analyzed. Several states present double minima generated by avoided crossings, some with a strong ionic character. © 2016 Wiley Periodicals, Inc.