We study inhibitory coherence (i.e. collective coherence by synaptic inhibition) in a population of globally coupled type-I neurons, which can fire at arbitrarily low frequency. No inhibitory coherence is observed in a homogeneous population composed of only subthreshold neurons, which exhibit noiseinduced firings. In addition to subthreshold neurons, there exist spontaneously firing suprathreshold neurons in a noisy environment of a real brain. To take into consideration the effect of suprathreshold neurons on inhibitory coherence, we consider a heterogeneous population of subthreshold and suprathreshold neurons and investigate the inhibitory coherence by increasing the fraction of suprathreshold neurons P supra. As P supra passes a threshold P * supra , suprathreshold neurons begin to synchronize and play the role of coherent inhibitors for the emergence of inhibitory coherence. Thus, regularly oscillating populationaveraged global potential appears for P supra > P * supra. For this coherent case, suprathreshold neurons exhibit sparse spike synchronization (i.e. individual potentials of suprathreshold neurons consist of coherent sparse spikings and coherent subthreshold small-amplitude hoppings). By virtue of their coherent inhibition, sparsely synchronized suprathreshold neurons suppress the noisy activity of subthreshold neurons. Thus, subthreshold neurons exhibit hopping synchronization (i.e. only coherent subthreshold hopping oscillations without spikings appear in the individual potentials of subthreshold neurons). We also characterize the inhibitory coherence in terms of the 'statistical-mechanical' spike-based and correlation-based measures, which quantify the average contributions of the microscopic individual spikes and individual potentials 4 Author to whom any correspondence should be addressed.