2021
DOI: 10.48550/arxiv.2107.03386
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Completely compact Herz-Schur multipliers of dynamical systems

Abstract: We prove that if G is a discrete group and (A, G, α) is a C*-dynamical system such that the reduced crossed product A ⋊r,α G possesses property (SOAP) then every completely compact Herz-Schur (A, G, α)-multiplier can be approximated in the completely bounded norm by Herz-Schur (A, G, α)-multipliers of finite rank. As a consequence, if G has the approximation property (AP) then the completely compact Herz-Schur multipliers of A(G) coincide with the closure of A(G) in the completely bounded multiplier norm. We s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?